

Available online at www.sciencedirect.com

CARBOHYDRATE RESEARCH

Carbohydrate Research 338 (2003) 2025-2027

www.elsevier.com/locate/carres

Note

Structure of the O-polysaccharide of *Erwinia carotovora* ssp. carotovora GSPB 436*

Sof'ya N. Senchenkova, Yuriy A. Knirel, Alexander S. Shashkov, Mamdoh Ahmed, Athanasios Mavridis, Klaus Rudolph

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospeckt 47, 119991 Moscow, Russian Federation

^b Institut für Pflanzenpathologie und Pflanzenschutz, Georg-August-Universität, D-37077 Göttingen, Germany

Received 20 May 2003; accepted 17 June 2003

Abstract

The O-polysaccharide of a phytopathogenic bacterium, *Erwinia carotovora* ssp. *carotovora* GSPB 436, was studied by sugar and methylation analysis, along with ¹H and ¹³C NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit of the O-polysaccharide was established:

$$\begin{array}{c} \alpha\text{-D-Glc}p\text{-}(1\to3)\\ \to 3)\text{-}\beta\text{-L-Rha}p\text{-}(1\to4)\text{-}\alpha\text{-L-Rha}p\text{-}(1\to3)\text{-}\alpha\text{-D-Fuc}p\text{-}(1\to4)\\ \end{array}$$

The O-polysaccharide contains a minor proportion of 4-O-methylrhamnose, which is suggested to terminate the polymer main chain.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Phytopathogenic bacteria; Erwinia carotovora; O-polysaccharide structure; Lipopolysaccharide

The lipopolysaccharide of Gram-negative phytopathogenic bacteria is implicated in plant pathogenesis, such as soft rot in vegetables caused by *Erwinia carotovora*. The core structure was established in an R-type lipopolysaccharide of *E. carotovora* FERM P-7576, whereas no data on the O-polysaccharide chain structure are available. We report herein on the structure of the O-polysaccharide of *E. carotovora* ssp. *carotovora* GSPB 436, which was isolated from the lipopolysaccharide by mild acid degradation.

Sugar analysis of the polysaccharide revealed rhamnose, fucose and glucose in the ratios 1.85:1:1.04, as well as a small amount of 4-O-methylrhamnose. Determination of the absolute configurations of the monosaccharides by GLC of the acetylated (+)-2-octyl glycosides

E-mail address: knirel@ioc.ac.ru (Y.A. Knirel).

showed that rhamnose has the L configuration and fucose and glucose have the D configuration.

Methylation analysis of the polysaccharide revealed 2,4-di-O-methylrhamnose, 2-O-methylrhamnose, 2,4-di-O-methylfucose and 2,3,4,6-tetra-O-methylglucose in the ratios 1:1.08:1.05:0.98, respectively, together with a minor proportion of 2,3,4-tri-O-methylrhamnose. Therefore, the polysaccharide is branched with a terminal glucopyranose residue and a 3,4-disubstituted rhamnose residue at the branching point. Another rhamnose residue and a fucose residue are 3-substituted. Methylation using CD₃I showed that 4-O-methylrhamnose is not glycosylated.

The 13 C NMR spectrum of the polysaccharide (Fig. 1) contained signals for four anomeric carbons at δ 95.7–102.6, three CH_3 –C groups (C-6 of Rha and Fuc) at δ 16.1–18.3, one HO CH_2 –C group (C-6 of Glc) at δ 61.9 and sugar ring carbons linked to oxygen in the region of δ 67.6–79.5. In addition, there were present a minor signal at δ 60.9, which could be assigned to an O-methyl group, and a number of minor sugar signals, which, most likely, belonged to 4-O-methylrhamnose. The 1 H

[★] Data presented at the XIth European Carbohydrate Symposium, September 2–7, 2001 Lisbon, Portugal.

^{*} Corresponding author. Tel.: +7-095-9383613; fax: +7-095-1355328.

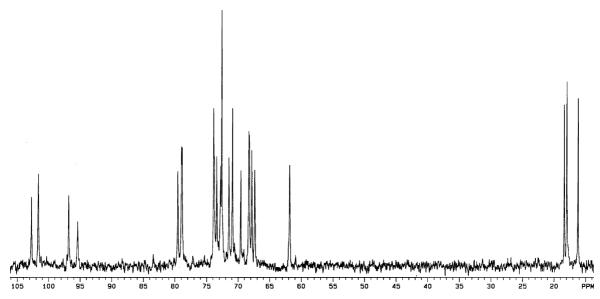


Fig. 1. ¹³C NMR spectrum of the O-polysaccharide from E. carotovora subsp. GSPB 436.

NMR spectrum of the polysaccharide contained signals for four anomeric protons at δ 4.73–5.13, three CH₃–C groups (H-6 of Rha and Fuc) at δ 1.18–1.37 and other sugar protons in the region of δ 3.42–4.32, and a minor signal for an O-methyl group at δ 3.55 (data of the 1 H, 1 H COSY spectrum).

The 1 H and 13 C NMR spectra of the polysaccharide

The ¹H and ¹³C NMR spectra of the polysaccharide were assigned using 2D COSY, ROESY and H-detected ¹H, ¹³C HMQC experiments (Table 1). In the COSY spectrum, connectivities could be traced between all protons of the four sugar spin systems, except for H-4 and H-5 of Fuc, which, instead, showed a correlation in the ROESY spectrum. The spin systems were assigned to particular sugars by typical $J_{2,3}$, $J_{3,4}$ and $J_{4,5}$ coupling constant values, which demonstrated also that all sugars are in the pyranose form. Relatively small $J_{1,2}$ coupling constant values of ~3 Hz indicated that Glc and Fuc are α-linked. As judged by the ¹³C NMR chemical shifts, one of the Rha residues is α-linked and the other β-linked (e.g., compare δ 69.6 and 73.4 for C-5 of α-Rhap and β-Rhap in the polysaccharide with δ 69.5 and 73.2

in the corresponding free monosaccharides,² respectively). The configurations of the glycosidic linkages were confirmed by intraresidue cross-peaks for H-1, H-2 of the α -linked monosaccharides and for H-1,H-3 and H-1,H-5 of β -Rhap in the ROESY spectrum.

The ¹³C NMR chemical shifts for C-2–C-6 of Glc in the polysaccharide were close to the chemical shifts of α glucopyranose,² and demonstrated the terminal position of the Glc residue. Downfield displacements of the signals for C-3 of α-Fuc and β-Rha, C-3 and C-4 of α-Rha in the ¹³C NMR spectrum of the polysaccharide, as compared with their positions in the spectra of the corresponding non-substituted monosaccharides,^{2,3} showed that α -Fuc and β -Rha are 3-substituted and α -Rha is at the branching point and is 3,4-disubstituted. The ROESY spectrum of the polysaccharide showed correlations between the following anomeric protons and protons at the linkage carbons: β-Rha H-1,α-Rha H-4, α -Rha H-1, α -Fuc H-3, α -Fuc H-1, β -Rha H-3, and Glc H-1.α-Rha H-3. These data defined the monosaccharides sequence in the repeating unit.

Table 1 500-MHz 1 H and 125-MHz 13 C NMR data of the O-polysaccharide from *E. carotovora* subsp. *carotovora* GSPB 436 (δ , ppm)

H-1	H-2	H-3	H-4	H-5	H-6 (H-6a,6b)	
4.73	4.21	3.63	3.48	3.42	1.37	
5.08	4.30	4.12	3.78	3.95	1.32	
5.07	3.94	4.00	3.85	4.32	1.18	
5.13	3.57	3.99	3.43	4.15	3.74, 3.81	
C-1	C-2	C-3	C-4	C-5	C-6	
101.5	68.3	79.1	71.6	73.4	18.3	
102.6	67.6	74.2	79.5	69.6	18.0	
96.8	68.3	78.8	72.8	67.9	16.1	
95.7	72.6	74.0	71.0	72.7	61.9	
	4.73 5.08 5.07 5.13 C-1 101.5 102.6 96.8	4.73 4.21 5.08 4.30 5.07 3.94 5.13 3.57 C-1 C-2 101.5 68.3 102.6 67.6 96.8 68.3	4.73 4.21 3.63 5.08 4.30 4.12 5.07 3.94 4.00 5.13 3.57 3.99 C-1 C-2 C-3 101.5 68.3 79.1 102.6 67.6 74.2 96.8 68.3 78.8	4.73 4.21 3.63 3.48 5.08 4.30 4.12 3.78 5.07 3.94 4.00 3.85 5.13 3.57 3.99 3.43 C-1 C-2 C-3 C-4 101.5 68.3 79.1 71.6 102.6 67.6 74.2 79.5 96.8 68.3 78.8 72.8	4.73 4.21 3.63 3.48 3.42 5.08 4.30 4.12 3.78 3.95 5.07 3.94 4.00 3.85 4.32 5.13 3.57 3.99 3.43 4.15 C-1 C-2 C-3 C-4 C-5 101.5 68.3 79.1 71.6 73.4 102.6 67.6 74.2 79.5 69.6 96.8 68.3 78.8 72.8 67.9	4.73 4.21 3.63 3.48 3.42 1.37 5.08 4.30 4.12 3.78 3.95 1.32 5.07 3.94 4.00 3.85 4.32 1.18 5.13 3.57 3.99 3.43 4.15 3.74, 3.81 C-1 C-2 C-3 C-4 C-5 C-6 101.5 68.3 79.1 71.6 73.4 18.3 102.6 67.6 74.2 79.5 69.6 18.0 96.8 68.3 78.8 72.8 67.9 16.1

Therefore, the O-polysaccharide of *E. carotovora* ssp. *carotovora* GSPB 436 has the structure shown below, which is unique among bacterial polysaccharide structures. Remarkably, *Pseudomonas fluorescens* IMV 472 produces an O-polysaccharide with the same main chain but a different side chain.⁴

α -D-Glcp-(1 \rightarrow 3) $_{1}$ \rightarrow 3)-β-L-Rhap-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Fucp-(1 \rightarrow

The ROESY spectrum of the O-polysaccharide showed correlation of the signal for the OMe group with three minor sugar signals at δ 3.49 (strong), 3.61 and 3.44 (both weak). These signals are close to those of H-4, H-3 and H-5 of β -Rha in the major series (δ 3.48, 3.63 and 3.42, respectively) and could be assigned thus to the minor 4-O-methyl- β -rhamnopyranose residue, which may terminate the main chain of the polysaccharide. Minor O-methylated monosaccharides occur typically in bacterial homo- or heteropolysaccharides with a homopolymer main chain and in a few cases are confirmed to terminate the main chain, $^{5-7}$ whereas methylation of the terminal sugar in a heteropolymer main chain, as in the O-polysaccharide of *E. carotovora* ssp. *carotovora* GSPB 436, seems to be less common.

1. Experimental

1.1. Isolation of lipopolysaccharide and polysaccharide

E. carotovora ssp. *carotovora* GSPB 436 was cultivated as described earlier. Bacterial cells were suspended in deionised water at 70 °C, mixed (1:1) with warm aq 90% phenol (70 °C), and stirred for 30 min at 70 °C. The mixture was stored on ice for 12 h and centrifuged for 20 min at 17,000g. The aq phase was dialyzed against deionised water for 7 days and lyophilised.

The polysaccharide was prepared by degradation of the lipopolysaccharides with aq 2% HOAc for 1.5 h at $100\,^{\circ}$ C, followed by GPC on a column (70×2.6 cm) of Sephadex G-50 using 0.05 M pyridinium acetate buffer pH 4.5 as eluent and monitoring with a Knauer differential refractometer.

1.2. Sugar and methylation analysis

The polysaccharide (0.5 mg) was hydrolyzed with 2 M CF₃CO₂H (100 °C, 2 h), and the monosaccharides were identified by GLC as the alditol acetates¹⁰ using a Hewlett–Packard 5880 instrument on a DB-5 column with a temperature gradient of 160 (1 min) to 250 °C at 3 °C min⁻¹ or GLC–MS on a Carlo Erba Fractovap 4200 chromatograph equipped with an Ultra-1 column and a Finnigan MAT ITD-700 mass spectrometer, using a temperature gradient of 150 (1 min) to 280 °C at 5 °C min⁻¹. The absolute configurations of the monosac-

charides were determined by GLC of the acetylated glycosides with (+)-2-octanol¹¹ under the same chromatographic conditions as above.

Methylation was carried out with CH_3I or CD_3I in DMSO in the presence of methylsulphinylmethanide. ¹² Hydrolysis was performed with 2 M CF_3CO_2H (100 °C, 2 h), and the partially methylated monosaccharides were reduced with $NaBH_4$, acetylated, and analysed by GLC-MS as above.

1.3. NMR spectroscopy

A sample of the polysaccharide was deuterium-exchanged by freeze-drying three times from D_2O and then examined in a solution of 99.96% D_2O . NMR spectra were recorded using a Bruker DRX-500 spectrometer at 50 °C. A mixing time of 200 ms was used in a 2D ROESY experiment. Chemical shifts are reported with internal sodium 3-trimethylsilylpropanoate- d_4 ($\delta_{\rm H}$ 0.00) and external acetone ($\delta_{\rm C}$ 31.45).

Acknowledgements

This work was supported by the RFBR (grant 02-04-48271).

References

- Fukuoka, S.; Knirel, Y. A.; Lindner, B.; Moll, H.; Seydel, U.; Zähringer, U. Eur. J. Biochem. 1997, 250, 55-62.
- Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59-75.
- 3. Jansson, P.-E.; Kenne, L.; Widmalm, G. *Carbohydr. Res.* **1989**, *188*, 169–191.
- Knirel, Y. A.; Veremeychenko, S. N.; Zdorovenko, G. M.; Shashkov, A. S.; Paramonov, N. A.; Zakharova, I. Y.; Kochetkov, N. K. Carbohydr. Res. 1994, 259, 147–151.
- Björndal, H.; Lindberg, B.; Nimmich, W. Acta Chem. Scand. 1970, 24, 3414–3415.
- 6. Jansson, P.-E.; Lönngren, J.; Widmalm, G.; Leontein, K.; Slettengren, K.; Svenson, S. B.; Wrangsell, G.; Dell, A.; Tiller, P. R. *Carbohydr. Res.* **1985**, *145*, 59–66.
- Senchenkova, S. N.; Knirel, Y. A.; Shashkov, A. S.; McGovern, J. J.; Moran, A. P. Eur. J. Biochem. 1996, 239, 434–438.
- Senchenkova, S. N.; Huang, X.; Laux, P.; Knirel, Y. A.; Shashkov, A. S.; Rudolph, K. *Carbohydr. Res.* 2002, 337, 1723–1728.
- Westphal, O.; Jann, K. Methods Carbohydr. Chem. 1965, 5, 83–89.
- 10. Sawardeker, J. S.; Sloneker, J. H.; Jeanes, A. *Anal. Chem.* **1965**, *37*, 1602–1603.
- Leontein, K.; Lindberg, B.; Lönngren, J. Carbohydr. Res. 1978, 62, 359–362.
- Conrad, H. E. Methods Carbohydr. Chem. 1972, 6, 361–364.